8 Pensar

ACME

Pentest Report

(December 15, 2025)

Generated by Pensar for ACME - Page 1 of 18

Table of Contents

1. Introduction

» 2. Executive Summary

o 2.1 Purpose

o 2.2 Findings Summary

o 2.3 Conclusion

3. Scope
o 3.1 In Scope
o 3.2 Out of Scope
» 4. Assets Tested
» 5. Attack Surface Methodology
» 6. Pentesting Methodology
» 7. Findings
- 8. Additional Observations

e 9, Conclusion

Generated by Pensar for ACME - Page 2 of 18

1. Introduction

This document presents the findings and results of the penetration testing assessment conducted by Pensar for the
coffee-shop application. The assessment was performed on December 15, 2025, and represents a comprehensive
security evaluation of the application's attack surface and security controls.

The penetration testing engagement was conducted as a whitebox assessment, providing Pensar with full access to the
application source code and running environment. This approach enables a thorough evaluation of both the application's
external attack surface and internal security implementation details. The assessment focused on identifying security
vulnerabilities, business logic flaws, and potential attack vectors that could be exploited by malicious actors.

This report is organized to provide both executive-level summaries and detailed technical findings. Security
professionals and developers should review the complete findings section for remediation guidance, while executive
stakeholders should focus on the Executive Summary and Conclusion sections for high-level risk assessment and
business impact analysis.

Generated by Pensar for ACME - Page 3 of 18

2. Executive Summary

2.1 Purpose

Pensar performed a comprehensive penetration testing assessment of the coffee-shop application to identify security
vulnerabilities, validate security controls, and provide actionable remediation guidance. The engagement was conducted
as a whitebox assessment, allowing Pensar to evaluate both the application's external attack surface and internal code

implementation.

The primary objectives of this assessment were to: (1) identify security vulnerabilities that could be exploited by
attackers, (2) evaluate the effectiveness of existing security controls, (3) assess business logic implementation for
potential abuse scenarios, and (4) provide specific, actionable recommendations for remediation and security
improvement.

The testing methodology employed industry-standard penetration testing techniques, including reconnaissance and
attack surface mapping, vulnerability scanning, manual exploitation testing, and business logic analysis. The
assessment scope included one APl endpoint and the associated backend application logic.

2.2 Findings Summary

Pensar identified a total of 2 security vulnerabilities during the assessment:

Finding Name Risk Rating Status
Missing Price Validation Allows Negative Product Prices m Open
Missing Validation for Negative Stock Quantities in Product Creation Open
((
Critical Vulnerabilities High Vulnerabilities
\ \
((
Medium Vulnerabilities Low Vulnerabilities
L L

2.3 Conclusion

The coffee-shop application contains critical security vulnerabilities that require immediate remediation. Specifically, the
application fails to implement proper input validation for product pricing and inventory management, allowing

Generated by Pensar for ACME - Page 4 of 18

authenticated administrators to create products with negative prices and stock quantities. These business logic
vulnerabilities could be exploited to manipulate financial records, disrupt inventory management systems, and potentially
facilitate fraud.

The presence of a critical vulnerability requires immediate action. Pensar strongly recommends prioritizing the
remediation of the price validation vulnerability within 15 days, followed by the stock quantity validation issue within 30
days. Both vulnerabilities stem from insufficient input validation in the product creation and update endpoints and can be
remediated through implementation of proper server-side validation logic.

While the assessment identified only two vulnerabilities, the critical nature of the price validation issue and its potential
business impact warrant urgent attention. The application demonstrates some positive security practices, including JWT-
based authentication and proper signature verification. However, the lack of comprehensive input validation on
business-critical fields represents a significant security gap that must be addressed before the application is deployed to
production or handles real financial transactions.

Generated by Pensar for ACME - Page 5 of 18

3. Scope

3.1 In Scope

The following assets and systems were included in the scope of this penetration testing assessment:

» Application: coffee-shop (Node.js/Next.js API application)

» Repository: joshkotrous/coffee-shop (main branch)

« Assessment Type: Whitebox penetration testing with full source code access
+ Assessment Date: December 15, 2025

» Duration: 11 minutes

« Primary Endpoint: /api/products (GET, POST, PUT methods)

« Testing Focus: API security, input validation, business logic, authentication, and authorization

3.2 Out of Scope

The following items were explicitly excluded from the scope of this assessment:

« Any domains, subdomains, or services not explicitly mentioned in the In Scope section

« Third-party services, libraries, or dependencies (unless directly exploitable through application code)
» Social engineering, phishing, or physical security testing

« Denial of Service (DoS) attacks or resource exhaustion testing

» Testing against production systems or live customer data

» Reverse engineering of compiled or obfuscated code

» Testing of infrastructure, network, or cloud provider security controls

Generated by Pensar for ACME - Page 6 of 18

4. Assets Tested

Endpoints Tested
AT HTTP T
ndpoin e
- Methods oI
/api/products GET, API
POST, Endpoint
PUT
Applications Tested
Application
Type Framework
Name
coffee-shop Web Next.js /
API Node.js

Authentication

Not Required (GET),
JWT Required
(POST/PUT)

Description

Description

Handles product operations. GET requests
retrieve all products with optional search
filtering. POST requests create new products
(admin only). PUT requests update existing
products.

RESTful API for managing coffee shop products, inventory, and

orders. Built with Next.js API routes and PostgreSQL database

backend.

Generated by Pensar for ACME - Page 7 of 18

5. Attack Surface Methodology

Pensar conducted a comprehensive attack surface analysis of the coffee-shop application to identify all exposed
endpoints, authentication mechanisms, and potential attack vectors. The reconnaissance phase began with source code
analysis, allowing Pensar to map the application architecture, identify APl endpoints, and understand the authentication
and authorization implementation.

Through static code analysis of the Next.js application structure, Pensar identified the primary APl endpoint at
/api/products, which handles product catalog operations. The endpoint supports multiple HTTP methods (GET, POST,
PUT) with different authentication requirements. GET requests are publicly accessible, while POST and PUT requests
require JWT authentication with admin privileges. Pensar documented the endpoint's request/response structure,
including required fields, data types, and expected behavior.

Pensar analyzed the authentication mechanism and discovered that the application implements JWT-based
authentication stored in HTTP-only cookies. The JWT tokens are verified using cryptographic signature validation, which
Pensar confirmed through testing. The application enforces role-based access control, requiring admin privileges for
product creation and modification operations. This authentication approach demonstrates security awareness, as it
protects against common CSRF attacks through the use of JWT tokens rather than simple session cookies.

During the reconnaissance phase, Pensar examined the database schema and API request/response patterns to
understand the data model and business logic. The product entity includes fields for name, description, price,
stock_quantity, and server-generated timestamps. Pensar identified that the APl accepts user-provided values for all
product fields, including price and stock_quantity, which are critical business-logic fields that should be subject to strict
validation.

The attack surface mapping revealed a single primary endpoint with limited external attack surface, but significant
internal business logic complexity. The application's reliance on server-side validation for business-critical fields was
identified as a key area requiring detailed testing. Pensar proceeded with focused testing on input validation, business
logic enforcement, and authorization controls to identify specific vulnerabilities.

Generated by Pensar for ACME - Page 8 of 18

6. Pentesting Methodology

Pensar employed a systematic whitebox penetration testing approach, leveraging full access to the application source
code and running environment to conduct comprehensive security testing. The testing methodology was structured
around key security domains: authentication and authorization, input validation, business logic, and data integrity.

The initial phase focused on authentication and authorization testing. Pensar verified that JWT signature validation is
properly implemented and that modified or forged tokens are correctly rejected by the API. Testing confirmed that the
application enforces role-based access control, requiring admin privileges for product creation and modification. Pensar
also tested for common JWT vulnerabilities, including the "none" algorithm attack and signature bypass techniques,
confirming that these attacks are properly mitigated.

The second phase concentrated on input validation testing for the product creation endpoint. Pensar systematically
tested the POST /api/products endpoint with various invalid inputs to identify validation gaps. Testing included attempts
to create products with negative prices, negative stock quantities, invalid data types, and boundary value testing. Pensar
discovered that the application fails to validate that the price field must be non-negative, allowing creation of products
with negative prices. Similarly, the stock_quantity field lacks validation to ensure non-negative values.

Pensar tested for mass assignment vulnerabilities by attempting to inject additional fields (id, created_at) into product
creation requests. The application correctly ignored these injected fields and used server-generated values,
demonstrating proper handling of mass assignment attacks. Testing also included attempts to trigger SQL injection
through various input vectors, which were properly mitigated through the use of parameterized queries.

The testing methodology included analysis of error handling and information disclosure. Pensar observed that invalid
input (such as non-numeric values for numeric fields) triggers database errors that are returned to the client. While these
errors do not expose sensitive information, they could be improved to provide more generic error messages. Testing
also verified that the application properly handles edge cases and boundary conditions.

Throughout the assessment, Pensar documented specific exploitation techniques, proof-of-concept payloads, and the
business impact of each identified vulnerability. The testing approach balanced breadth (covering multiple attack
vectors) with depth (thoroughly validating each finding), ensuring comprehensive coverage of the application's security
posture.

Generated by Pensar for ACME - Page 9 of 18

7. Findings

Finding #1: Missing Price Validation Allows Negative Product Prices

Risk Rating: m

CWE-20: Improper Input Validation | Endpoint: POST /api/products | Status: Open

Observation

Pensar identified a critical security issue where the /api/products endpoint (POST method) fails to implement server-side
validation for product prices. An authenticated admin user can create products with negative prices by sending a POST
request with a negative value in the "price" field. The server accepts and persists this invalid data without any validation
or rejection, resulting in a critical business logic vulnerability that directly impacts financial integrity and inventory

management.

Technical Explanation

This vulnerability exists because the application fails to implement server-side validation for the price field before
persisting product data to the database. The root cause stems from insufficient input validation in the product creation
handler. The application accepts the price value directly from the client request without verifying that it represents a
valid, non-negative monetary amount. Due to the absence of business logic validation, any authenticated admin user
can bypass the intended constraint that product prices must be positive values.

Exploitation

The vulnerability can be exploited through the following steps:

1. Obtain valid JWT authentication credentials with admin privileges

2. Craft a POST request to /api/products with a negative price value:

POST /api/products HTTP/1.1

Host: localhost:3000

Content-Type: application/json
Authorization: Bearer <valid-jwt-token>

"name": "Exploit Product",

"description": "Test product with negative price",
"price": -50.00,

"stock_quantity": 10

3. Send the request to the API endpoint

4. Observe that the server responds with HTTP 201 (Created) and persists the product with the negative price to the
database

Generated by Pensar for ACME - Page 10 of 18

5. Verify the product was created by querying GET /api/products and confirming the negative price is stored

Impact Achieved

Through this vulnerability, Pensar was able to create products with negative prices in the database, demonstrating
complete bypass of business logic validation. The server accepted and persisted invalid data without any error or
warning, confirming the vulnerability is fully exploitable by authenticated administrators.

Impact Assessment

This critical vulnerability has severe business and technical implications. An attacker with admin privileges could create
products with negative prices, which would result in the system issuing credits or refunds instead of charging customers
for purchases. This could be exploited to facilitate fraud, money laundering, or unauthorized financial transfers.

The technical impact extends beyond simple data corruption. Systems that rely on product pricing data for financial
reporting, inventory valuation, or revenue calculations would produce incorrect results. Negative prices could propagate
through order processing systems, accounting systems, and financial statements, creating widespread data integrity
issues.

The business impact is severe: financial fraud, revenue loss, inventory mismanagement, and potential regulatory
compliance violations. If this application processes real financial transactions, the vulnerability could result in direct
financial loss and legal liability.

Recommendation
Pensar recommends implementing comprehensive server-side validation for the price field:

1. Implement Price Validation: Add validation logic to ensure the price field is a positive number greater than zero.
Reject any request with a price value less than or equal to zero with a clear error message.

2. Use Validation Framework: Implement validation using a schema validation library (e.g., Zod, Joi, or similar) to
enforce type safety and business logic constraints at the API handler level.

3. Database Constraints: Add database-level constraints (CHECK constraint) to prevent negative prices from being
stored, providing defense-in-depth protection.

4. Code Example:

/I Recommended validation implementation
const createProductSchema = z.object({
name: z.string().min(1),
description: z.string(),
price: z.number().positive("Price must be greater than zero"),

stock_quantity: z.number().int().nonnegative()

hE

/I In the POST handler:
const validatedData = createProductSchema.parse(req.body);
/I Proceed with database insertion only if validation passes

5. Add Database Constraint: Execute the following SQL to add a CHECK constraint:

ALTER TABLE products ADD CONSTRAINT price_positive CHECK (price > 0);

Generated by Pensar for ACME - Page 11 of 18

6. Test Coverage: Add unit tests and integration tests to verify that negative prices are rejected and that valid prices
are accepted.

7. References: CWE-20: Improper Input Validation, OWASP Business Logic Vulnerability

Generated by Pensar for ACME - Page 12 of 18

https://cwe.mitre.org/data/definitions/20.html
https://owasp.org/www-community/attacks/Business_logic_vulnerability

Finding #2: Missing Validation for Negative Stock Quantities in Product
Creation

Risk Rating:

CWE-20: Improper Input Validation | Endpoint: POST /api/products | Status: Open

Observation

Pensar discovered a significant security concern where the POST /api/products endpoint fails to validate that
stock_quantity is non-negative before persisting to the database. An authenticated admin user can create products with
negative stock quantities by sending a POST request with a negative value in the "stock_quantity" field. The server
accepts and persists this invalid data without any validation or rejection, resulting in a critical business logic vulnerability
affecting inventory management systems.

Technical Explanation

This vulnerability exists because the application fails to implement server-side validation for the stock_quantity field
before persisting product data to the database. The root cause stems from insufficient input validation in the product
creation handler, similar to the price validation issue. The application accepts the stock_quantity value directly from the
client request without verifying that it represents a valid, non-negative integer. Due to the absence of business logic
validation, any authenticated admin user can create products with negative stock quantities, which violates fundamental
inventory management principles.

Exploitation

The vulnerability can be exploited through the following steps:

1. Obtain valid JWT authentication credentials with admin privileges

2. Craft a POST request to /api/products with a negative stock_quantity value:

POST /api/products HTTP/1.1

Host: localhost:3000

Content-Type: application/json
Authorization: Bearer <valid-jwt-token>

"name": "Exploit Product",

"description": "Test product with negative stock",
"price": 25.00,

"stock_quantity": -100

3. Send the request to the API endpoint

4. Observe that the server responds with HTTP 201 (Created) and persists the product with the negative stock quantity
to the database

Generated by Pensar for ACME - Page 13 of 18

5. Verify the product was created by querying GET /api/products and confirming the negative stock quantity is stored

Impact Achieved

Through this vulnerability, Pensar was able to create products with negative stock quantities in the database,
demonstrating complete bypass of inventory management validation. The server accepted and persisted invalid data
without any error or warning, confirming the vulnerability is fully exploitable by authenticated administrators.

Impact Assessment

This high-severity vulnerability disrupts inventory management and business operations. Negative stock quantities
represent an impossible state in real-world inventory systems and indicate a fundamental data integrity issue. An
attacker with admin privileges could create products with negative stock, which would confuse inventory tracking
systems and potentially allow overselling of products.

The technical impact includes data integrity violations, incorrect inventory calculations, and potential system errors when
processing orders against negative stock. Systems that calculate available inventory, generate purchase orders, or
manage warehouse operations would produce incorrect results based on corrupted stock data.

The business impact includes inventory mismanagement, potential overselling of products, customer dissatisfaction, and
operational disruption. If the application manages real inventory, negative stock quantities could lead to fulfillment
failures and customer service issues.

Recommendation
Pensar recommends implementing comprehensive server-side validation for the stock_quantity field:

1. Implement Stock Quantity Validation: Add validation logic to ensure the stock_quantity field is a non-negative
integer. Reject any request with a stock_quantity value less than zero with a clear error message.

2. Use Validation Framework: Implement validation using a schema validation library (e.g., Zod, Joi, or similar) to
enforce type safety and business logic constraints at the API handler level.

3. Database Constraints: Add database-level constraints (CHECK constraint) to prevent negative stock quantities
from being stored, providing defense-in-depth protection.

4. Code Example:

/I Recommended validation implementation
const createProductSchema = z.object({
name: z.string().min(1),
description: z.string(),
price: z.number().positive(),

stock_quantity: z.number().int().nonnegative("Stock quantity cannot be negative")

hE

/I In the POST handler:
const validatedData = createProductSchema.parse(req.body);
/I Proceed with database insertion only if validation passes

5. Add Database Constraint: Execute the following SQL to add a CHECK constraint:

ALTER TABLE products ADD CONSTRAINT stock_quantity_nonnegative CHECK (stock_quantity >= 0);

Generated by Pensar for ACME - Page 14 of 18

6. Implement Stock Adjustment Logic: For stock updates, implement separate endpoints for stock adjustments
(add/remove stock) rather than allowing direct modification of the stock_quantity field.

7. Test Coverage: Add unit tests and integration tests to verify that negative stock quantities are rejected and that valid

quantities are accepted.

8. References: CWE-20: Improper Input Validation, OWASP Business Logic Vulnerability

Generated by Pensar for ACME - Page 15 of 18

https://cwe.mitre.org/data/definitions/20.html
https://owasp.org/www-community/attacks/Business_logic_vulnerability

8. Additional Observations

Positive Security Observations

JWT Authentication Implementation

Pensar observed that the application implements JWT-based authentication with proper cryptographic signature
verification. The application correctly rejects tokens with invalid signatures and does not accept the "none" algorithm,
which demonstrates security awareness. The use of JWT tokens stored in HTTP-only cookies provides protection
against common CSRF attacks and XSS-based token theft.

Role-Based Access Control

The application implements role-based access control (RBAC) to restrict product creation and modification to admin
users. This demonstrates proper authorization enforcement and prevents unauthorized users from modifying product
data. The RBAC implementation should be maintained and extended to other sensitive operations.

Mass Assignment Protection

Testing revealed that the application properly handles mass assignment attacks by ignoring injected fields (such as id
and created_at) and using server-generated values instead. This demonstrates good security practice in preventing
attackers from manipulating system-generated fields.

Recommendations for Defense-in-Depth

Error Message Improvement

While not a critical vulnerability, the application could improve error handling by providing more generic error messages
to clients. Currently, database errors (such as PostgreSQL error codes) may be exposed to clients, which could leak
information about the database structure. Pensar recommends implementing a centralized error handling middleware
that translates database errors into generic, user-friendly error messages.

Input Validation Framework

Pensar recommends implementing a comprehensive input validation framework across all API endpoints. The current
implementation relies on ad-hoc validation, which has led to the identified vulnerabilities. A schema-based validation
approach (using libraries like Zod or Joi) would provide consistent, maintainable validation across the application.

API Rate Limiting

The application should implement rate limiting on API endpoints to prevent abuse and brute-force attacks. While not
currently exploitable, rate limiting provides defense-in-depth protection against various attack scenarios.

Generated by Pensar for ACME - Page 16 of 18

9. Conclusion

The coffee-shop application contains critical security vulnerabilities that require immediate remediation. The identified
vulnerabilities stem from insufficient input validation on business-critical fields, specifically the price and stock_quantity
fields in the product creation endpoint. These vulnerabilities allow authenticated administrators to create products with
invalid data, compromising data integrity and enabling potential fraud.

The presence of a critical vulnerability (negative price validation) represents an urgent security concern that must be
addressed before the application handles real financial transactions. The vulnerability could be exploited to manipulate
financial records, facilitate fraud, and cause direct financial loss. The high-severity vulnerability (negative stock quantity
validation) represents a significant operational risk that could disrupt inventory management and customer fulfillment.

While the assessment identified only two vulnerabilities, both stem from a common root cause: insufficient input
validation. Pensar recommends implementing a comprehensive input validation framework across all APl endpoints to
prevent similar vulnerabilities from being introduced in the future. The application demonstrates some positive security
practices, including JWT authentication, role-based access control, and mass assignment protection, which should be
maintained and extended.

Recommended Remediation Timelines

Pensar recommends prioritizing remediation based on risk severity, consistent with industry standards from NIST, CISA,
and leading cybersecurity frameworks:

) CVSS Remediation L
Severity Level Justification
Range Target

Critical 9.0-10.0 15 days These vulnerabilities pose immediate risk and require
emergency patching. The negative price validation
vulnerability directly impacts financial integrity and
must be remediated urgently.

High 7.0-8.9 30 days Significant security concerns requiring prompt
attention to prevent exploitation. The negative stock
quantity vulnerability disrupts inventory management
and should be addressed within one month.

Medium 4.0-6.9 90 days Should be addressed in regular maintenance cycles
and quarterly security updates.

Low 0.1-3.9 120 days Defense-in-depth measures to strengthen overall
security posture, addressed in regular maintenance.

Timeline recommendations are based on CISA Binding Operational Directive 19-02, NIST Special Publication 800-53
Control SI-2, and GSA vulnerability management guidance.

Generated by Pensar for ACME - Page 17 of 18

Next Steps

Pensar recommends the following immediate actions:
1. Immediate (Days 1-3): Implement input validation for the price field to reject negative values. This is the highest
priority due to the critical severity and financial impact.

2. Short-term (Days 4-15): Implement input validation for the stock_quantity field and add database-level constraints
for both fields.

3. Medium-term (Days 16-30): Implement a comprehensive input validation framework across all APl endpoints to
prevent similar vulnerabilities.

4. Ongoing: Establish a security testing process to validate fixes and prevent regression of identified vulnerabilities.

Final Assessment

The coffee-shop application requires urgent security remediation before deployment to production or handling of real
financial transactions. The identified vulnerabilities represent critical business risks that could result in financial fraud,
data corruption, and operational disruption. However, the application demonstrates foundational security practices that
provide a solid foundation for improvement. With focused remediation efforts on input validation and implementation of
the recommended security controls, the application's security posture can be significantly improved.

Pensar is available to conduct a retest assessment following remediation to verify that the identified vulnerabilities have
been successfully addressed and to validate the effectiveness of the implemented security controls.

Q&M ARotisia

Pentgfer Signature

Josh Kotrous December 15, 2025

Pentester Printed Name Date signed

Generated by Pensar for ACME - Page 18 of 18

Josh Kotrous
Line

Josh Kotrous
Line

Josh Kotrous
Line

